S-ITERATION FOR GENERAL QUASI MULTI VALUED CONTRACTION MAPPINGS

SALWA SALMAN ABED \& RANA FADHIL ABBAS
Def of Math College of Education Ibn Al-Haitham for Pure Sciences, University of Baghdad

Abstract

In this paper, the convergence of s-iteration sequence for general quasi contraction multi valued mappings is studied, where its rate of convergence is compared with Picard-Mann iteration sequence and show that s-iteration is faster than Picard-Mann iteration. Finally, a numerical example is given.

KEYWORDS: Fixed Point, General Quasi Multivalued Contraction Mappings, Iteration Processes, Normed Spaces

1. INTRODUCTION

Let X be a Banach space the classical Banach's contraction, see [22] shows that the Picard iteration P_{n}.
$P_{n}: x_{n+1}=F x_{n} n \geq 0$, where $x_{0} \in X$
Converges to unique fixed point z of contraction mapping $F: X \rightarrow X$, i.e. $\exists \alpha \in(1,0)$ such that
$\|F \mathrm{x}-F \mathrm{y}\| \leq \alpha\|x-y\|$, for all x, y in X
With priori error estimates
$\left\|x_{n-} Z\right\| \leq \frac{\alpha^{n}}{1-\alpha}\left\|x_{0}-x_{1}\right\| \mathrm{n}=0,1,2$
and posteriori error estimates
$\left\|x_{n-Z}\right\| \leq \frac{\alpha}{1-\alpha}\left\|x_{n-1}-x_{n}\right\| \mathrm{n}=0,1,2$
its rate of convergence is obtained by

$$
\left\|x_{n}-z\right\| \leq \alpha\left\|x_{n}-z\right\| \leq \alpha^{n} .\left\|x_{0}-z\right\|
$$

For various generalizations of Branch's contraction mappings (1.1), much attention has been given to get many convergence results for P_{n} iteration such as, for Kannan's mappings[3], Chatterjea's mappings [4]and Zamfirescu mappings (or Z-operator) [5]which is a generalization of the independence mappings Banach's, Kannan's and Chatterjea's [12] contractive mappings (on compact normal space). For multi-valued contraction the argument of the proof of [theorem 5, 2] included a proof of the convergence of P_{n} iteration

$$
\begin{equation*}
x_{0} \in X, x_{n+1} \in F x_{n} \mathrm{n}=1,2 \tag{1.2}
\end{equation*}
$$

to some fixed point of F, where $F \mathrm{x}$ is nonempty closed and bounded subset of X .
Ciric [1] proved that P_{n} iteration converges to the unique fixed point of a quasi- contraction multi-valued mappings. and gave a formula to posteriori error estimation. Moreover, Dung, el. at [20] gave a more general theorem
which covered all previous cases in [theorem 3, 1], where the convergence of $\left\langle x_{n+1}\right\rangle$ in (1.2) and posteriori error estimates for quasi-contraction multi-valued mappings are discussed.

On the other hand, other types of iteration are appeared which are convergence to a fixed point of quasi contraction mappings, like Mann iteration [13], Ishikawa iteration[14], s-iteration [15], two-step Mann iteration [16], Picard-Mann iteration [17], Picard-S iteration [18]. For the contraction mappings and their generalizations, many results are appeared which are included the convergence of various types of iteration processes such as [7], [8], [9],[19]. and the equivalence between some of these types of iterations, such as, in [11] Mann and Ishikawa iteration are equivalent when dealing with z-operators. Babu and Prasad [6] showed that Mann iteration converges faster than Ishikawa iteration for the class of z-operators. Also, in view of [7], the Picard iteration converges faster than Ishikawa iteration for these same class of mappings. In [15] that s-iteration converges faster than Mann iteration and Ishikawa iteration for z-operators. Also, there are some results showing that Picard iteration faster than Mann and Ishikawa iteration for quasi contraction mapping see [6], [1]

Here, the convergence of s - iteration sequence to fixed point is proved for general quasi contraction multi-valued mappings (shortly, g. q. m. c-mappings). And the equivalence of convergence between s-iteration and P_{n}-Mann iteration, the s-iteration converges faster than P_{n}-Mann iteration is studied.

2. PRELIMINARIES

Let X be a Banach space and $F: X \rightarrow 2^{X}$ be a multivalued mapping, $x_{0} \in X$ and $\left\langle\alpha_{n}\right\rangle,\left\langle\beta_{n}\right\rangle$ be a sequences of real numbers in $(0,1)$. In the following, we state some types of iteration processes for F at x_{0} :

- The Mann iteration of $F M_{n}$ is defined by the sequence $\left\langle x_{n}\right\rangle$:

$$
\left\{\begin{array}{c}
x_{0} \in X \tag{2.1}\\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \mu_{n}
\end{array} \text { for } \mathrm{n} \geq 0\right.
$$

Where $\mu_{n} \in F x_{n}, \xi_{n} \in F x_{n}$

- The Picard Mann iteration of $F P_{n} M_{n}$ is defined by the sequence $\left\langle x_{n}\right\rangle$:

$$
\left\{\begin{array}{c}
x_{n+1}=\xi_{n} \tag{2.2}\\
y_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \mu_{n}
\end{array} \text { for } \mathrm{n} \geq 0\right.
$$

Where $\mu_{n} \in F x_{n}, \xi_{n} \in F x_{n}$

- The 2- step Mann iteration of $F 2 M_{n}$ is defined by

The sequence $\left\langle x_{n}\right\rangle$:

$$
\left\{\begin{array}{c}
x_{0} \in X \tag{2.3}\\
x_{n=1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} \xi_{n} \text { for } \mathrm{n} \geq 0 \\
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} \mu_{n}
\end{array}\right.
$$

Where $\mu_{n} \in F x_{n}, \xi_{n} \in F x_{n}$

- The Ishikawa iteration of $F I_{n}$ is defined by

The sequence $\left\langle x_{n}\right\rangle$:

$$
\left\{\begin{array}{c}
x_{0} \in X \tag{2.4}\\
x_{n=1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \xi_{n} \text { for } \mathrm{n} \geq 0 \\
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} \mu_{n}
\end{array}\right.
$$

Where $\mu_{n} \in F x_{n}, \xi_{n} \in F x_{n}$
The s- iteration of $F S_{n}$ is defined by

The sequence $\left\langle x_{n}\right\rangle$:
$\left\{\begin{array}{c}x_{0} \in X \\ x_{n=1}=\left(1-\alpha_{n}\right) \mu_{n}+\alpha_{n} \xi_{n} \text { for } \mathrm{n} \geq 0 \\ y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} \mu_{n}\end{array}\right.$
where $\mu_{n} \in F x_{n}, \xi_{n} \in F x_{n}$

Definition (2.1): [8]: Let $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ be two sequences of real numbers that converge to a and b respectively, and assume there exists
$l=\lim _{n \rightarrow \infty} \frac{\left|a_{n}-a\right|}{\left|b_{n}-b\right|}$, then if $l=0$, then we say that $\left\langle a_{n}\right\rangle$ converges faster to a than $\left\langle b_{n}\right\rangle$ to b.

Definition (2.2): for any two nonempty subsets M and N of X the Hausdorff distance is

$$
D(M, N)=\max \left\{\sup _{x \in M} d(x, N), \sup _{y \in N} d(y, M)\right\}
$$

Where $d(x, N)=\inf \{d(x, y): y \in N\}$
Definition (2.3): [1]: $\operatorname{let} x_{0} \in X$, an orbit of F at x_{0} is a sequence $\left\{x_{n}: x_{n} \in F x_{n-1}, n \in \mathbb{N}\right\}$
A space X is called to be F-orbitally complete if every Cauchy sequence

Which is a sub sequence of an orbit of F at x for some $x \in X$, converge in X
Definition (2.4): [20]: Let $F: X \rightarrow X$ be a mapping on metric space X. The mapping F is said to be a (g. q. m. cmappings)iff there exists
$q \in[0,1)$ Such that for all $x, y \in X$,
$D(F x, F y) \leq q \max \{d(x, y), d(x, F x), d(y, F y), d(x, F y), d(y, F x)$

$$
\left.d\left(F^{2} x, x\right), d\left(F^{2} x, F x\right), d\left(F^{2} x, y\right), d\left(F^{2} x, F y\right)\right\}
$$

Theorem (2.5): [Theorem (3.4), 20]: let (X, d) be ametric space and
$F: \mathrm{X} \rightarrow C B(X)$ be ag. q. m. c-mapping If X is F - orbitally complete. Then

- $\quad F$ has a unique fixed point z in X and $F z=\{z\}$
- for each $x_{0} \in X$ there exists an orbit $\left\langle x_{n}\right\rangle$ of F at x_{0} such that $\lim _{n \rightarrow \infty} x_{n}=z$ for all $x \in X$ and $d\left(x_{n}, z\right) \leq \frac{\left(q^{1-a}\right)^{n}}{1-q^{1-a}} d\left(x_{0}, x_{1}\right)$ For all $n \in N$, where $a<1$ is any fixed positive number

As special cases of contraction condition (2.6) are, for x, y in X,

Banach` s multivalued contraction condition is \(D(F x, F y) \leq a d(x, y)\) Where \(0 \leq a<1\) Kannan` s multivalued contraction condition is
$D(F x, F y) \leq b[d(x, F x)+d(y, F y)]$ Where $0 \leq b \leq 0.5$
Chatterjea` s multivalued contraction condition is \(D(F x, F y) \leq c[d(x, F y)+d(y, F x)]\) Where \(0 \leq c \leq 0.5\) z-multivalued contraction condition (z-operator) (z1) \(D(F x, F y) \leq a d(x, y)\) (z2) \(D(F x, F y) \leq b[d(x, F x)+d(y, F y)]\) (z3) \(D(F x, F y) \leq c[d(x, F y)+d(y, F x)]\) where \(0 \leq a<1,0 \leq b<0.5,0 \leq c<0.5\) multivalued quasi - contraction (Ciric contraction) is \(D(F x, F y) \leq q \max \{d(x, y), d(x, F x), d(y, F y), d(x, F y), d(y, F x)\) It is Know that the contractions (2.7), (2.8) and (2.9) are independent [21] and the (2.10) is a generalization of them [8`]. Dung and el at gave the following example to show that the contraction a g. q. m. c-mappings is a generalization of (2.11)

Example (2.3)

Let $X=\{1,2,3,4,5\}$ with d defined as:

$$
d(x, y)=\left\{\begin{array}{c}
0 \text { if } x=y \\
2 \text { if }(x, y) \\
1 \text { otherwise }
\end{array} \in\{(1,4),(1,5),(4,1),(5,1)\}\right.
$$

Let $F: X \rightarrow X$ be defined by
$F 1=F 2=F 3=1, F 4=2, F 5=3$
F is not quasi-contraction for $x=4$ and $y=5$ because there is no a nonnegative number $q<1$ satisfying the equation (2.6). However, F is generalized quasi-contraction since the (2.6) hold for some $q \in[0.5,1$), for all $x, y \in X$.

3. MAIN RESULTS

we start with following theorem:
Theorem (3.1): let $\emptyset \neq \mathrm{M}$ be a convex subset of a Banach space X and F : $M \rightarrow C B(M)$ is g.q.m.c-mappings. let $x_{0} \in \mathrm{M}$ and $\left\langle x_{n}\right\rangle$ be S_{n} iteration with $\sum_{n=0}^{\infty} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \beta_{n}=0$. then $\left\langle x_{n}\right\rangle$ converges strongly to a fixed point of F.

To prove we need the following lemma:

Lemma (3.2): let X, M, F and $\left\langle x_{n}\right\rangle$ as in theorem (3.1) then the sequences
$\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle,\left\langle\mu_{n}\right\rangle,\left\langle\xi_{n}\right\rangle$ are bounded where $x_{n}, y_{n}, \mu_{n}, \xi_{n}$ is defined in (2.5)
Proof: for each $n \geq 0$, define
$A_{n}=\left\{\left\langle x_{i}\right\rangle \cup\left\langle y_{i}\right\rangle \cup\left\langle\mu_{i}\right\rangle \cup\left\langle\xi_{i}\right\rangle\right.$, where $\left.0 \leq i \leq n\right\}$
and $c_{n}=\operatorname{diam}\left(A_{n}\right)$
$d_{n}=\max \left\{\sup _{0 \leq i \leq n}\left\|x_{0}-\mu_{i}\right\|, \sup _{0 \leq i \leq n}\left\|x_{0}-\xi_{i}\right\|\right\}$
Firstly, we show that $c_{n}=d_{n}$. Assume that $a_{n}>0$ there are six cases
Case. $1 a_{n}=\left\|x_{i}-x_{j}\right\|$ for some $0 \leq i \leq j \leq n$.
from (2.5) $a_{n}=\left\|x_{i}-x_{j}\right\|$

$$
\begin{aligned}
& \leq\left(1-\alpha_{j-1}\right)\left\|x_{i}-\mu_{j-1}\right\|+\alpha_{j-1}\left\|x_{i}-\xi_{j-1}\right\| \\
& \leq\left(1-\alpha_{j-1}\right)\left\|x_{i}-\mu_{j-1}\right\|+\alpha_{j-1} c_{n} \\
& c_{n}\left(1-\alpha_{j-1}\right) \leq\left(1-\alpha_{j-1}\right)\left\|x_{i}-\mu_{j-1}\right\|
\end{aligned}
$$

Which implies $c_{n}=\left\|x_{i}-\mu_{j-1}\right\|$ and by induction, $c_{n}=\left\|x_{i}-x_{i}\right\|=0$, contraction with $c_{n}>0$ so must be 0 . Case. $2 c_{n}=\left\|x_{i}-\mu_{j-1}\right\|$, for some $0 \leq i \leq j \leq n$.then from (2.5) and condition (2.6)

$$
\begin{aligned}
& c_{n}=\left\|x_{i}-\mu_{j-1}\right\| \leq\left(1-\alpha_{i-1}\right)\left\|\mu_{i-1}-\mu_{j}\right\|+\alpha_{i-1}\left\|\xi_{i-1}-\mu_{j}\right\| \\
& \leq\left(1-\alpha_{i-1}\right)\left\|\mu_{i-1}-\mu_{j}\right\|+\alpha_{i-1} D\left(F y_{i-1}, F x_{j}\right)
\end{aligned}
$$

$$
\leq\left(1-\alpha_{i-1}\right)\left\|\mu_{i-1}-\mu_{j}\right\|+\alpha_{i-1} q c_{n}, q<1
$$

$$
c_{n} \leq\left\|\mu_{i-1}-\mu_{j}\right\| \text { then } c_{n}=\left\|\mu_{i-1}-\mu_{j}\right\|
$$

and by induction, $\left\|x_{0}-\mu_{j}\right\|=c_{n}$
Case. $3 c_{n}=\left\|x_{i}-y_{i}\right\|$ for some $0 \leq i \leq j \leq n$

$$
c_{n}=\left\|x_{i}-y_{i}\right\| \leq \beta_{j}\left\|x_{i}-\mu_{j}\right\|+\left(1-\beta_{j}\right)\left\|x_{j}-\mu_{j}\right\|
$$

This implies that:
$c_{n}=\left\|x_{j}-\mu_{j}\right\|$ or $c_{n}=\left\|x_{i}-\mu_{j}\right\|$
by case. 2

$$
c_{n}=\left\|x_{0}-\mu_{j}\right\|
$$

Case. $4 c_{n}=\left\|x_{i}-\xi_{j}\right\|$ by similar way to case. 2
Case. $5 c_{n}=\left\|y_{i}-\mu_{j}\right\|$
Case. $6 c_{n}=\left\|y_{i}-\xi_{j}\right\|$
The remaining case of c_{n} are:
$c_{n}=\left\|\mu_{i}-\mu_{j}\right\|$ or $c_{n}=\left\|\mu_{i}-\xi_{j}\right\|$
Are impossible and for any set A, denote
$\delta(\mathrm{A})=\operatorname{dim}(\mathrm{A})$.
We show that $d_{n}=\max \left\{\delta_{n}, \varepsilon_{n}\right\}$ where $\delta_{n}=\delta\left(o\left(x_{0}, n\right)\right)$ and $\varepsilon_{n} \delta\left(o\left(y_{0}, n\right)\right)$
Suppose that
$d_{n}=\delta_{n}=\left\|x_{0}-\mu_{i}\right\|$ for some $0 \leq i \leq n$ then $\delta<\infty$
If $i>0$ then from (2.6)
$\delta_{n}=\left\|x_{0}-\mu_{i}\right\| \leq\left\|x_{0}-\mu_{1}\right\|+\left\|\mu_{1}-\mu_{i}\right\|$
$\leq\left\|x_{0}-\mu_{1}\right\|+D\left(F x_{0}, F x_{i}\right)$
$\leq\left\|x_{0}-\mu_{1}\right\|+q \delta_{n}$
$\delta_{n} \leq \frac{1}{1-q}\left\|x_{0}-\mu_{1}\right\|$

Similarly, we can show that $\varepsilon_{n} \leq \frac{1}{1-q}\left\|x_{0}-\mu_{1}\right\|$ which is complete the proof.

Proof of Theorem (3.1)

For each $n \geq 0$ difine

$$
A_{n}=\left\{\left\langle x_{i}\right\rangle \cup\left\langle y_{i}\right\rangle \cup\left\langle\mu_{i}\right\rangle \cup\left\langle\xi_{i}\right\rangle, \text { Where } 0 \leq i \leq n\right\}
$$

By using the same argument of proof lemma (3.2), we can show that
$r_{n}:=\operatorname{diam}\left(A_{n}\right)=\max \left\{\sup _{j \geqq n}\left\|x_{n}-\mu_{j}\right\|, \sup _{j \geqq n}\left\|x_{n}-\xi_{j}\right\|\right\}$

By using (2.5)
$\left\|x_{n}-z\right\| \leq\left(1-\alpha_{n-1}\right)\left\|\mu_{n-1}-z\right\|+\alpha_{n-1}\left\|\xi_{n-1}-z\right\|$
$\leq\left(1-\alpha_{n-1}\right) r_{n-1}+\alpha_{n-1} H\left(F y_{n-1}, F z\right)$

$$
\leq\left(1-\alpha_{n-1}\right) r_{n-1}+q \alpha_{n-1} r_{n-1}
$$

for each n , assume that $r_{n}>0$, then it follows that:

$$
\begin{align*}
& r_{n} \leq\left(1-\alpha_{n-1}\right) r_{n-1}+q \alpha_{n-1} r_{n-1} \\
& r_{n-1}-r_{n} \geq(1-q) \alpha_{n-1} r_{n-1} \tag{3.1}
\end{align*}
$$

This implies $\left\langle r_{n}\right\rangle$ is none increasing in n,
Therefore, there exist r such that $r=\lim _{n \rightarrow \infty} r_{n}$.
Suppose that $r>0$. from (3.1)

$$
(1-q) \alpha_{n-1} r \leq(1-q) \alpha_{n-1} r_{n-1} \leq r_{n-1}-r_{n}
$$

or
$(1-q) r \sum_{k=0}^{n} \alpha_{k} \leq \sum_{k=0}^{n}\left(r_{k}-r_{k+1}\right)=r_{0}-r_{n-1}$
when $n \rightarrow \infty$, the right hand side of (3.2) is bounded but the hypothesis of $\left\langle\alpha_{n}\right\rangle$, makes the left hand side is un bounded which is contradiction. so, $\mathrm{r}=0$. Hence $x_{n} \rightarrow z$ as $n \rightarrow \infty$

Which is complete this proof.
As application of theorem (3.1) we can prove a fixed point result for Contraction of integral type of summable $\mu:[0,+\infty) \rightarrow[0,+\infty$) (i.e. with finite

Integral on each compact subset of $[0,+\infty)$:
Theorem (3.3): let M be a nonempty closed convex subset of Banach space X and $F: M \rightarrow M$ be an operater satisfying the following condition:

$$
\left.\int_{0}^{d(F x, F y)} \mu(t) d t \leq q \int_{0}^{\max \{\|x-y\|,\|x-F x\|,\|y-F y\|,\|x-F y\|,\|y-F x\|,}\left\|F^{2} x-x\right\|,\left\|F^{2} x-F x\right\|,\left\|F^{2} x-y\right\|,\left\|F^{2} x_{F y}\right\|\right\}
$$

for all $x, y \in \mathrm{X}$ and $0<q<1$, where $\mu:[0,+\infty) \rightarrow[0,+\infty)$ is a Lebesgue-integrablesummable mapping and for each $\varepsilon>\int_{0}^{\varepsilon} \mu(t) d t>0$. Let $\left\langle x_{n}\right\rangle$ be defined by the iteration (2.5) with $\sum_{0}^{\infty} \alpha_{n} \beta_{n}=\infty$, then $\left\langle x_{n}\right\rangle$ converges strongly to the unique fixed point of F.

Proof: by taking $\mu(t)=1$ the proof of theorem (3.3) is follows from theorem (3.1)over $[0,+\infty$)because the result of the integral summable mappings satisfying condition (2.6) and it is just transforms in to a g.q.m.c-mappings not involving integral. This completes the proof.

Lemma (3.4) [10]: let $\left\langle b_{n}\right\rangle$ be a non negative sequence where $\lambda_{n} \in(0,1)$ for all $n \geq n_{0}, \sigma_{n}=o\left(\lambda_{n}\right)$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$. This is satisfying the following inequality:
$b_{n+1} \leq\left(1-\lambda_{n}\right) b_{n}+\sigma_{n}$, then $\lim _{n \rightarrow \infty} b_{n}=0$.

Theorem (3.5): let $F: M \rightarrow C B(M)$ be multi valued mappings satisfying condition (2.6), let $\alpha_{n}>0$ for all $n \geq 0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$

Then for $u_{0}=x_{0} \in M$, the following are equivalent:

- The $P_{n} M_{n}$ (2.2) converges to z;
- The s-iteration (2.5) converges toz.

Proof: By theorem (3.1), F has a fixed point, say, z and the sequence $\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle,\left\langle\mu_{n}\right\rangle,\left\langle\xi_{n}\right\rangle$ are bounded. Similarly, the sequence $\left\langle u_{n}\right\rangle,\left\langle\theta_{n}\right\rangle$ also are bounded. In order to prove the equivalence between (2.2) and (2.5), we need to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.2}
\end{equation*}
$$

set, $r_{n}=\max \left\{\sup _{j \geq n}\left(\left\|x_{n}-\mu_{n}\right\|\right) \cup \sup _{j \geqq n}\left(\left\|x_{n}-\theta_{n}\right\|\right) \cup \sup _{j \geqq n}\left(\left\|x_{n}-\xi_{n}\right\|\right) \cup \sup _{j \geqq n}\left(\left\|u_{n}-\mu_{n}\right\|\right) \cup\right.$ $\left.\sup _{j \geq n}\left(\left\|u_{n}-\theta_{n}\right\|\right) \cup \sup _{j \geq n}\left(\left\|u_{n}-\xi_{n}\right\|\right)\right\}$

Then the following are true:

- by using (2.5)

$$
\begin{align*}
& \left\|x_{n}-\mu_{j}\right\| \leq\left(1-\alpha_{n-1}\right)\left\|\mu_{n-1}-\mu_{j}\right\|+\alpha_{n-1}\left\|\xi_{n-1}-\mu_{j}\right\| \\
& \leq\left(1-\alpha_{n-1}\right) D\left(F x_{n-1}, F x_{j}\right)+\alpha_{n-1} D\left(F y_{n-1}, F x_{j}\right) \\
& \leq\left(1-\alpha_{n-1}\right) q r_{n-1}+\alpha_{n-1} q r_{n-1} \\
& r_{n} \leq q r_{n-1} \tag{3.3}
\end{align*}
$$

$\left\|x_{n}-\theta_{j}\right\| \leq\left(1-\alpha_{n-1}\right)\left\|\mu_{n-1}-\theta_{j}\right\|+\alpha_{n-1}\left\|\xi_{n-1}-\theta_{j}\right\|$

$$
\leq\left(1-\alpha_{n-1}\right) D\left(F x_{n-1}, F v_{j}\right)+\alpha_{n-1} D\left(F y_{n-1}, F v_{j}\right)
$$

$$
\leq\left(1-\alpha_{n-1}\right) q r_{n-1}+\alpha_{n-1} q r_{n-1}
$$

$$
\begin{equation*}
r_{n} \leq q r_{n-1} \tag{3.4}
\end{equation*}
$$

$$
\left\|x_{n}-\xi_{j}\right\| \leq\left(1-\alpha_{n-1}\right)\left\|\mu_{n-1}-\xi_{j}\right\|+\alpha_{n-1}\left\|\xi_{n-1}-\xi_{j}\right\|
$$

$$
\leq\left(1-\alpha_{n-1}\right) D\left(F x_{n-1}, F y_{j}\right)+\alpha_{n-1} D\left(F y_{n-1}, F y_{j}\right)
$$

$$
\leq\left(1-\alpha_{n-1}\right) q r_{n-1}+\alpha_{n-1} q r_{n-1}
$$

$$
\begin{equation*}
r_{n} \leq q r_{n-1} \tag{3.5}
\end{equation*}
$$

$$
\left\|u_{n}-\mu_{j}\right\| \leq\left\|\theta_{n-1}-\mu_{j}\right\|
$$

$$
\begin{align*}
& \leq D\left(F v_{n-1}, F x_{j}\right) \\
& r_{n} \leq q r_{n-1} \tag{3.6}\\
& \left\|u_{n}-\theta_{j}\right\| \leq\left\|\theta_{n-1}-\theta_{j}\right\| \\
& \leq D\left(F v_{n-1}, F v_{j}\right) \\
& r_{n} \leq q r_{n-1} \tag{3.7}\\
& \left\|u_{n}-\xi_{j}\right\| \leq\left\|\theta_{n-1}-\xi_{j}\right\| \\
& \leq D\left(F v_{n-1}, F y_{j}\right. \\
& r_{n} \leq q r_{n-1} \tag{3.8}
\end{align*}
$$

It is clear that all (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) and using theorem (3.1) that the sequence $\left\langle r_{n}\right\rangle$ is non increasing in n and positive. There exist r such that

$$
\lim _{n \rightarrow \infty} r_{n}=r, r=0
$$

Therefore

$\lim _{n \rightarrow \infty}\left\|x_{n}-\mu_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n}-\theta_{n}\right\|=0$,
$\lim _{n \rightarrow \infty}\left\|x_{n}-\xi_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|u_{n}-\mu_{n}\right\|=0$,
$\lim _{n \rightarrow \infty}\left\|u_{n}-\theta_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|u_{n}-\xi_{n}\right\|=0$.
Suppose now that the s-iteration converges, then one has

$$
\begin{align*}
& \left\|x_{n+1}-u_{n+1}\right\| \leq\left(1-\alpha_{n}\right)\left\|\mu_{n}-\theta_{n}\right\|+\alpha_{n}\left\|\xi_{n}-\theta_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left(\left\|\mu_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-\theta_{n}\right\|\right) \\
& +\alpha_{n}\left(\left\|\xi_{n}-x_{n}\right\|+\left\|x_{n}-\theta_{n}\right\|\right) \\
& \left\|x_{n+1}-u_{n+1}\right\| \leq\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|+\alpha_{n}\left(\left\|\xi_{n}-x_{n}\right\|+\left\|x_{n}-\theta_{n}\right\|\right) \tag{3.10}
\end{align*}
$$

Using (3.9) and (3.10) and lemma (3.4), with

$$
\begin{aligned}
& \lambda_{n}:=\left\|x_{n}-u_{n}\right\| \\
& \sigma_{n}:=\alpha_{n}\left(\left\|\xi_{n}-x_{n}\right\|+\left\|x_{n}-\theta_{n}\right\|\right)
\end{aligned}
$$

$$
\sigma_{n=} o\left(\alpha_{n}\right)
$$

We have $\lim _{n \rightarrow \infty} \lambda_{n}=0$, that is, (3.2) holds. The relation

$$
\left\|u_{n}-z\right\| \leq\left\|x_{n}-u_{n}\right\|+\left\|x_{n}-z\right\| \rightarrow 0
$$

Then the $P_{n} M_{n}$ iteration converges too. Suppose now that the $P_{n} M_{n}$ iteration converges, then one has

$$
\begin{align*}
& \left\|u_{n+1}-x_{n+1}\right\| \leq\left(1-\alpha_{n}\right)\left\|\theta_{n}-\mu_{n}\right\|+\alpha_{n}\left\|\theta_{n}-\xi_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left(\left\|\theta_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\|+\left\|x_{n}-\mu_{n}\right\|\right) \\
& +\alpha_{n}\left(\left\|\theta_{n}-u_{n}\right\|+\left\|u_{n}-\xi_{n}\right\|\right) \\
& \left\|u_{n+1}-x_{n+1}\right\| \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x_{n}\right\|+\alpha_{n}\left(\left\|\theta_{n}-u_{n}\right\|+\left\|u_{n}-\xi_{n}\right\|\right) \tag{3.11}
\end{align*}
$$

Using (3.9) and (3.11) and lemma (3.4), with $\lambda_{n}:=\left\|u_{n}-x_{n}\right\|$

$$
\begin{aligned}
& \sigma_{n}:=\alpha_{n}\left(\left\|\theta_{n}-u_{n}\right\|+\left\|u_{n}-\xi_{n}\right\|\right) \\
& \sigma_{n}=o\left(\alpha_{n}\right)
\end{aligned}
$$

We havelim $n_{n \rightarrow \infty} \lambda_{n}=0$, that is, (3.2) holds. The relation
$\left\|x_{n}-z\right\| \leq\left\|u_{n}-x_{n}\right\|+\left\|u_{n}-z\right\| \rightarrow 0$. Then the s-iteration converges too.
Which is complete the proof.
As an application of theorem (3.5)

Example (3.6)

Let $f:[0: 8) \rightarrow[0: 8)$ defined by $f(x)=\frac{x^{3}+9}{10}$. Then f is an increasing function. By taking $\beta_{n}=\alpha_{n}=\frac{1}{(1+n)^{\frac{1}{2}}}$, with fixed point=1and initial points: $\mathrm{u}_{0}=\mathrm{x}_{0}=0.6$. In this example we using Mat lap to see that s -iteration equivalent with Picard-Mann iteration listed in Table 1.

Table 1

\mathbf{n}	S- iteration	Picard-Mann
$\mathbf{1}$	0.978275778969600	0.978275778969600
$\mathbf{2}$	0.995851011484343	0.996773763535413
$\mathbf{3}$	0.999049483160993	0.999424935574572
$\mathbf{4}$	0.999764960104952	0.999887919215415
$\mathbf{5}$	0.999939373359160	0.999976904099156
$\mathbf{6}$	0.999983934877438	0.999995051392005
$\mathbf{7}$	0.999995662484216	0.999998908205991
$\mathbf{8}$	0.999998812610045	0.999999753523607
$\mathbf{9}$	0.999999671489158	0.999999943310442
$\mathbf{1 0}$	0.999999908345504	0.999999986757764
..	\ldots	\ldots
$\mathbf{2 2}$	0.99999999999972	0.999999999999999
$\mathbf{2 3}$	0.999999999999992	1

Table 1 - Cond.,		
$\mathbf{2 4}$	0.999999999999998	1
$\mathbf{2 5}$	0.999999999999999	1
$\mathbf{2 6}$	1	1

Remark (3.7): Let $F: M \rightarrow C B(M)$ be satisfying condition (2.6) then, it is not difficult to show that:

$$
\begin{equation*}
D(F x, F y) \leq \delta\left\{\|x-y\|+d(x, F x)+d\left(x, F^{2} x\right\}\right. \tag{3.12}
\end{equation*}
$$

and $D(F x, F y) \leq \delta\left\{\|x-y\|+d(y, F x)+d\left(y, F^{2} x\right\}\right.$
for all x, y in M and $\delta=\max \left\{q, \frac{q}{1-q}\right\}$.
Theorem (3.8): let $F: M \rightarrow C B(M)$ be multi valued mappings satisfying condition (2.6) let $\left\langle x_{n}\right\rangle,\left\langle u_{n}\right\rangle$ be the siteration and Picard-Mann iteration respectively defined by (2.5) and (2.2) for $x_{0}, u_{0} \in M$ with $\left\langle\alpha_{n}\right\rangle$ and $\left\langle\beta_{n}\right\rangle$ real sequences such that $0 \leq \alpha_{n}, \beta_{n} \leq 1$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Then $\left\langle x_{n}\right\rangle$ and $\left\langle u_{n}\right\rangle$ converge to the unique fixed point of F, and moreover, the s-iteration converges faster, than the Picard-Mann iteration, to the fixed point of F.

Proof: by using Remark (3.6) and definition of s-iteration we have

$$
\begin{equation*}
\left\|x_{n+1}-z\right\| \leq\left(1-\alpha_{n}\right)\left\|\mu_{n}-z\right\|+\alpha_{n}\left\|\xi_{n}-z\right\| \tag{3.14}
\end{equation*}
$$

suppose $x=z$ and $y=x_{n}$, by (3.12) we get
$\left\|\mu_{n}-z\right\| \leq \delta\left\|x_{n}-z\right\|$
If $x=z$ and $y=y_{n}$ by (3.12) we get
$\left\|\xi_{n}-z\right\| \leq \delta\left\|y_{n}-z\right\|$
put (3.14) and (3.15) in (3.14)

$$
\begin{equation*}
\left\|x_{n+1}-z\right\| \leq\left(1-\alpha_{n}\right) \delta\left\|x_{n}-z\right\|+\alpha_{n} \delta\left\|y_{n}-z\right\| \tag{3.17}
\end{equation*}
$$

$\left\|y_{n}-z\right\| \leq\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+\beta_{n}\left\|\mu_{n}-z\right\|$
$\leq\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+\beta_{n} \delta\left\|x_{n}-z\right\|$
$\leq\left(1-\beta_{n}+\beta_{n} \delta\right)\left\|x_{n}-z\right\|$ Put in (3.17)
$\left\|x_{n+1}-z\right\| \leq\left\{\left(1-\alpha_{n}\right) \delta+\alpha_{n} \delta\left(1-\beta_{n}+\beta_{n} \delta\right)\right\}\left\|x_{n}-z\right\|$
$\leq\left\{\delta-\alpha_{n} \beta_{n} \delta+\alpha_{n} \beta_{n} \delta^{2}\right\}\left\|x_{n}-z\right\|$
$\leq \prod_{k=1}^{n}\left\{\delta-\alpha_{k} \beta_{k} \delta+\alpha_{k} \beta_{k} \delta^{2}\right\}\left\|x_{0}-z\right\|$
let $a_{n}=\left\{\delta-\alpha_{k} \beta_{k} \delta+\alpha_{k} \beta_{k} \delta^{2}\right\}$
$=\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}$
Similarly, let $\left\langle u_{n}\right\rangle$ be the Picard-Mann iteration defined by (2.2) then, we have in (3.13) let $x=z, y=v_{n}$

$$
\begin{align*}
& \left\|u_{n+1}-z\right\|=\left\|q_{n}-z\right\| \\
& \leq 3 \delta\left\|v_{n}-z\right\| \tag{3.18}\\
& \left\|v_{n}-z\right\| \leq\left(1-\alpha_{n}\right)\left\|u_{n}-z\right\|+\alpha_{n} \omega_{n} \tag{3.19}\\
& \text { let } y=u_{n}, x=z \text { in }(3.13) \text {, we have } \\
& \left\|\omega_{n}-z\right\| \leq 3 \delta\left\|u_{n}-z\right\| \text { put in }(3.19) \text { and put (3.19) in(3.18) } \\
& \left\|u_{n+1}-z\right\| \leq 3 \delta\left\{\left(1-\alpha_{n}\right)\left\|u_{n}-z\right\|+\alpha_{n} 3 \delta\left\|u_{n}-z\right\|\right\} \\
& \leq\left\{3 \delta-3 \alpha_{n} \delta+9 \alpha_{n} \delta^{2}\right\}\left\|u_{n}-z\right\| \\
& \leq \prod_{k=1}^{n}\left\{3 \delta-3 \alpha_{k} \delta+9 \alpha_{k} \delta^{2}\right\}\left\|u_{0}-z\right\| \\
& \text { let } b_{n}=3 \delta-3 \alpha_{k} \delta+9 \alpha_{k} \delta^{2} \\
& \quad=\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}
\end{align*}
$$

By using the Definition (2.1) we first note that $a_{n}<b_{n}$ for each k and
$\frac{a_{n}}{b_{n}}=\frac{\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}}{\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}}$, since $\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}<\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}$
Now, for each k, we know that
$\frac{\min \left\{\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}\right\}}{\max \left\{\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}\right\}}<1$ and $\left(\frac{\min \left\{\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}\right\}}{\max \left\{\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}\right\}}\right) \rightarrow 0$
Clearly $\prod_{k=1}^{n} \frac{\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}}{\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}}<\left(\frac{\min \left\{\left(1-\alpha_{k}\right) \delta+\alpha_{k} \delta^{2}\right\}}{\max \left\{\left(1-\alpha_{k}\right) 3 \delta+\alpha_{k}(3 \delta)^{2}\right\}}\right)^{n}$
and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, as $n \rightarrow \infty$
As a converge sequence we obtain that.

Example

Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be defined by $\mathrm{f}(\mathrm{x})=(1-\mathrm{x})^{9}$ then f is a decreasing function. The comparison of the convergence for S - iteration and Picard Mann is shown where the initial points: $u_{0}=x_{0}=0.6$ and $\beta_{n}=\alpha_{n}=$ $\frac{1}{(1+\mathrm{n})^{\frac{1}{4}}}$, where the fixed $\mathrm{z}=0.175699$ is listed in Table 2. we see that the S -iteration converges faster than Picard-Mann.

Table 2

\mathbf{n}	S- iteration	Picard-Mann
$\mathbf{1}$	0.997643	0.997643
$\mathbf{2}$	0.177487	0.211069
$\mathbf{3}$	0.178056	0.255567
$\mathbf{4}$	0.177781	0.302197
$\mathbf{5}$	0.176920	0.296542
$\mathbf{6}$	0.176148	0.273882
$\mathbf{7}$	0.175788	0.257326
$\mathbf{8}$	0.175704	0.243684
$\mathbf{9}$	0.175699	0.232251
$\mathbf{1 0}$	0.175699	0.222550
$\mathbf{1 1}$	0.175699	0.214259
$\mathbf{1 2}$	0.175699	0.207153
\ldots	\ldots	\ldots
$\mathbf{3 1}$	0.175699	0.175704
$\mathbf{3 2}$	0.175699	0.175701
$\mathbf{3 3}$	0.175699	0.175700
$\mathbf{3 4}$	0.175699	0.175699
$\mathbf{3 5}$	0.175699	0.175699

REFERENCES

1. Ciric, L. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. Vol. 45, pp. 267-273. (1974).
2. Nadler, N. B. Multi-valued contraction mapping, Pacific J. Math. Vol. 30, no. 2, pp. 475-488.(1969)
3. Kannan, R. some results on fixed points, Bull. Calcutta Math. Soc. Vol. 60, pp. 71-76. (1968).
4. Chatterjee, S. K. Fixed point theorems compacts, Rend. Acad. Bulgare Sci. Vol. 25, pp. 727-730.(1972).
5. Zamfirescu, T. fixed point theorems in metric space, Arch. Math. Vol. 23, pp. 292-298. (1972).
6. Babu, G. V. Prasad, K. N, "Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators ", fixed point theory and applications, pp. 1-6.(2006)
7. Berinde, V. "Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators", fixed point theory and applications, Vol.1, pp.1-9.(2004)
8. Berinde, V. "on the convergence of the Ishikawa iteration in the class of quase-contractive operator", Acta Math. Univ. Comeniaca, Vol. 73 no.1, pp. 119-126. (2004).
9. Berinde, V. "iterative approximation of fixed points" Springer, Berlin, V. Heidelberg (2007)
10. Ciric, L. B. "convergence theorems for a sequence of Ishikawa iteration for nonlinear quasi-contractive mappings", Indian J. Pure Appl. Math. Vol.30, no.4, pp. 425-433.(1999)
11. Olaleru, J. O. "A comparison of Picard and Mann iteration for quasi-contractive maps", fixed point theory, Vol.8, no.1, pp. 87-95.(2007)
12. Soltuz, S. M. "the equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators", Math. Communications Vol.10, no.1, pp. 81-88.(2005).
13. Rhoades, B. E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. Vol. 226, pp. 257-290. (1977)
14. Mann, W. R. "mean value methods in iteration", Proceedings of the American Math. Soc., Vol. 4, no. 3, pp. 506510. (1953)
15. Ishikawa, S. "fixed point by a new iteration method", Proceeding of the American Math. Soc., Vol. 44, no. 1, pp. 147-15. (1974)
16. Agarwal, R. P. O' Regan, O. and Sahu, D. R. "Iterative construction of fixed points of nearly asymptotically non expansive mappings", Journal of Nonlinear and Convex Analysis, Vol. 8, no. 1, pp. 6179-6189, (2007)
17. Thianwan, S. "common fixed point of new iteration for two asymptotically non expansivenonself -mappings in a Banach space", Journal of Computational and Applied Math., Vol. 224, no. 2, pp. 688-695, (2009)
18. Khan, SH. A Picard-Mann hybrid iterative process. fixed point theory Appl., doi:10.1186/1687-1812-2013-69. (2013)
19. Gursoy, F, Karakaya, V, "A Picard-S hybrid type iteration method for solving a differential equation with retarded argument", pp. 16. (2014).
20. Abed, S. S, The convergence of Ishikawa iteration with respect to some types of multi valued mappings, 1 stscie. nati. Conf. for women researches, part 1, pp. 320-337. (2012)
21. Dung, N. V., Kumam, P., Sitthithakerngkiet, K, A Generalization of Ciric fixed point theorems, Facu. of Sci. and Math. Filo. Vol. 29, no.7, pp 1549-1556. (2015)
22. Rhoades, B. E. fixed point iteration using infinite matrices, Trans. Amer. Math. Soc. 196, pp161-176. (1974).
23. Zeidler E, "nonlinear functional analysis and applications (fixed point theorems), Springer Verlag New York Inc. (1986)
